Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3405, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336925

RESUMO

Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/fisiologia , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes , Infecções Estafilocócicas/microbiologia , Plâncton , Lasers , Ouro/farmacologia , Íons , Ligas , Testes de Sensibilidade Microbiana
2.
Nanoscale ; 16(5): 2552-2564, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221893

RESUMO

The established DLVO theory explains colloidal stability by the electrostatic repulsion between electrical double layers. While the routinely measured zeta potential can estimate the charges of double layers, it is only an average surface property which might deviate from the local environment. Moreover, other factors such as the ionic strength and the presence of defects should also be considered. To investigate this multivariate problem, here we model the interaction between a negatively charged Au particle and a negatively charged TiO2 surface containing positive/neutral defects (e.g. surface hydroxyls) based on the finite element method, over 6000 conditions of these 6 parameters: VPart (particle potential), VSurf (surface potential), VDef (defect potential), DD (defect density), Conc (salt concentration), and R (particle radius). Using logistic regression, the relative importance of these factors is determined: VSurf > VPart > DD > Conc > R > VDef, which agrees with the conventional wisdom that the surface (and zeta) potential is indeed the most decisive descriptor for colloidal interactions, and the salt concentration is also important for charge screening. However, when defects are present, it appears that their density is more influential than their potential. To predict the fate of interactions more confidently with all the factors, we train a support vector machine (SVM) with the simulation data, which achieves 97% accuracy in determining whether adsorption is favorable on the support. The trained SVM including a graphical user interface for querying the prediction is freely available online for comparing with other materials and models. We anticipate that our model can stimulate further colloidal studies examining the importance of the local environment, while simultaneously considering multiple factors.

3.
Adv Healthc Mater ; 12(30): e2302084, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661312

RESUMO

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Ligas de Ouro/farmacologia , Prata/farmacologia , Staphylococcus aureus , Ligas/farmacologia , Ouro/farmacologia , Bactérias , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
Chemistry ; 29(50): e202301260, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37334753

RESUMO

Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.


Assuntos
Nanopartículas Metálicas , Terapia com Prótons , Radiossensibilizantes , Humanos , Ouro/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio
5.
Chemphyschem ; 24(11): e202300089, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878868

RESUMO

Laser ablation in liquids has been established as a scalable preparation method of nanoparticles for various applications. Particularly for materials prone to oxidation, it is established to suppress oxidation by using organic solvents as a liquid medium. While this often functionalizes the nanoparticles with a carbon shell, the related chemical processes that result from laser-induced decomposition reactions of the organic solvents remain uncertain. Using a systematic series of C6 solvents complemented by n-pentane and n-heptane during the nanosecond laser ablation of gold, the present study focuses on the solvent-dependent influence on gas formation rates, nanoparticle productivity, and gas composition. Both the permanent gas and hydrogen formation was found to be linearly correlated with ablation rate, ΔHvap , and pyrolysis activation energy. Based on this, a decomposition pathway linked to pyrolysis is proposed allowing the deduction of first selection rules for solvents that influence the formation of carbon or permanent gases.

6.
Angew Chem Int Ed Engl ; 62(12): e202213968, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625361

RESUMO

Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.

7.
Small ; 19(10): e2206485, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650990

RESUMO

Pulsed laser fragmentation of microparticles (MPs) in liquid is a synthesis method for producing high-purity nanoparticles (NPs) from virtually any material. Compared with laser ablation in liquids (LAL), the use of MPs enables a fully continuous, single-step synthesis of colloidal NPs. Although having been employed in several studies, neither the fragmentation mechanism nor the efficiency or scalability have been described. Starting from time-resolved investigations of the single-pulse fragmentation of single IrO2 MPs in water, the contribution of stress-mediated processes to the fragmentation mechanism is highlighted. Single-pulse, multiparticle fragmentation is then performed in a continuously operated liquid jet. Here, 2 nm-sized nanoclusters (NCs) accompanied by larger fragments with sizes ranging between several ten nm and several µm are generated. For the nanosized product, an unprecedented efficiency of up to 18 µg J-1 is reached, which exceeds comparable values reported for high-power LAL by one order of magnitude. The generated NCs exhibit high catalytic activity and stability in oxygen evolution reactions while simultaneously expressing a redox-sensitive fluorescence, thus rendering them promising candidates in electrocatalytic sensing. The provided insights will pave the way for laser fragmentation of MPs to become a versatile, scalable yet simple technique for nanomaterial design and development.

8.
Faraday Discuss ; 242(0): 301-325, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222171

RESUMO

Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.

13.
Langmuir ; 38(43): 13030-13047, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260482

RESUMO

Sterilization is a major prerequisite for the utilization of nanoparticle colloids in biomedicine, a process well examined for particles derived from chemical synthesis although highly underexplored for electrostatically stabilized ligand-free gold nanoparticles (AuNPs). Hence, in this work, we comprehensively examined and compared the physicochemical characteristics of laser-generated ligand-free colloidal AuNPs exposed to steam sterilization and sterile filtration as a function of particle size and mass concentration and obtained physicochemical insight into particle growth processes. These particles exhibit long-term colloidal stability (up to 3 months) derived from electrostatic stabilization without using any ligands or surfactants. We show that particle growth attributed to cluster-based ripening occurs in smaller AuNPs (∼5 nm) following autoclaving, while larger particles (∼10 and ∼30 nm) remain stable. Sterile filtration, as an alternative effective sterilizing approach, has no substantial impact on the colloidal stability of AuNPs, regardless of particle size, although a mass loss of 5-10% is observed. Finally, we evaluated the impact of the sterilization procedures on potential particle functionality in proton therapy, using the formation of reactive oxygen species (ROS) as a readout. In particular, 5 nm AuNPs exhibit a significant loss in activity upon autoclaving, probably dedicated to specific surface area reduction and surface restructuring during particle growth. The filtered analog enhanced the ROS release by up to a factor of ∼2.0, at 30 ppm gold concentration. Our findings highlight the need for carefully adapting the sterilization procedure of ligand-free NPs to the desired biomedical application with special emphasis on particle size and concentration.


Assuntos
Ouro , Nanopartículas Metálicas , Espécies Reativas de Oxigênio , Tamanho da Partícula , Ligantes , Esterilização
14.
Adv Healthc Mater ; 11(23): e2102637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148583

RESUMO

The mechanical stability of implant coatings is crucial for medical approval and transfer to clinical applications. Here, electrophoretic deposition (EPD) is a versatile coating technique, previously shown to cause significant post-surgery impedance reduction of brain stimulation platinum electrodes. However, the mechanical stability of the resulting coating has been rarely systematically investigated. In this work, pulsed-DC EPD of laser-generated platinum nanoparticles (PtNPs) on Pt-based, 3D neural electrodes is performed and the in vitro mechanical stability is examined using agarose gel, adhesive tape, and ultrasonication-based stress tests. EPD-generated coatings are highly stable inside simulated brain environments represented by agarose gel tests as well as after in vivo stimulation experiments. Electrochemical stability of the NP-modified surfaces is tested via cyclic voltammetry and that multiple scans may improve coating stability could be verified, indicated by higher signal stability following highly invasive adhesive tape stress tests. The brain sections post neural stimulation in rats are analyzed via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Measurements reveal higher levels of Pt near the region stimulated with coated electrodes, in comparison to uncoated controls. Even though local concentrations in the vicinity of the implanted electrode are elevated, the total Pt mass found is below systemic toxicologically relevant concentrations.


Assuntos
Nanopartículas Metálicas , Animais , Ratos , Platina
15.
JACS Au ; 2(7): 1757-1768, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911453

RESUMO

Herein, we report a straightforward approach for the in situ preparation of Pt-Au alloy nanoparticles from Pt + xAu/C nanocomposites using monometallic colloidal nanoparticles as starting blocks. Four different compositions with fixed Pt content and varying Pt to Au mass ratios from 1:1 up to 1:7 were prepared as formic acid oxidation reaction (FAOR) catalysts. The study was carried out in a gas diffusion electrode (GDE) setup. It is shown that the presence of Au in the nanocomposites substantially improves the FAOR activity with respect to pure Pt/C, which serves as a reference. The nanocomposite with a mass ratio of 1:5 between Pt and Au displays the best performance during potentiodynamic tests, with the electro-oxidation rates, overpotential, and poisoning resistance being improved simultaneously. By comparison, too low or too high Au contributions in the nanocomposites lead to an unbalanced performance in the FAOR. The combination of operando small-angle X-ray scattering (SAXS), scanning transmission electron microscopy (STEM) elemental mapping, and wide-angle X-ray scattering (WAXS) reveals that for the nanocomposite with a 1:5 mass ratio, a conversion between Pt and Au from separate nanoparticles to alloy nanoparticles occurs during continuous potential cycling in formic acid. By comparison, the nanocomposites with lower Au contents, for example, 1:2, exhibit less in situ alloying, and the concomitant performance improvement is less pronounced. On applying identical location transmission electron microscopy (IL-TEM), it is revealed that the in situ alloying is due to Pt dissolution and re-deposition onto Au as well as Pt migration and coalescence with Au nanoparticles.

16.
Biomolecules ; 12(8)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008988

RESUMO

Due to the ubiquity of environmental micro- and nanoplastics (MNPs), inhalation and ingestion by humans is very likely, but human health effects remain largely unknown. The NLRP3 inflammasome is a key player of the innate immune system and is involved in responses towards foreign particulate matter and the development of chronic intestinal and respiratory inflammatory diseases. We established NLRP3-proficient and -deficient THP-1 cells as an alternative in vitro screening tool to assess the potential of MNPs to activate the NLRP3 inflammasome. By investigating cytokine release (IL-1ß and IL-8) and cytotoxicity after treatment with engineered nanomaterials, this in vitro approach was compared to earlier published ex vivo murine bone marrow-derived macrophages and in vivo data. This approach showed a strong correlation with previously published data, verifying that THP-1 cells are a suitable model to investigate NLRP3 inflammasome activation. We then investigated the proinflammatory potential of eight MNPs of different size, shape, and chemical composition. Only amine-modified polystyrene (PS-NH2) acted as a direct NLRP3 activator. However, polyethylene terephthalate (PET), polyacrylonitrile (PAN), and nylon (PA6) induced a significant increase in IL-8 release in NLRP3-/- cells. Our results suggest that most MNPs are not direct activators of the NLRP3 inflammasome, but specific MNP types might still possess pro-inflammatory potential via other pathways.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Inflamassomos/metabolismo , Interleucina-8 , Camundongos , Microplásticos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1
17.
NPJ Sci Food ; 6(1): 19, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396555

RESUMO

Coffee is typically brewed by extracting roasted and milled beans with hot water, but alternative methods such as cold brewing became increasingly popular over the past years. Cold-brewed coffee is attributed to health benefits, fewer acids, and bitter substances. But the preparation of cold brew typically needs several hours or even days. To create a cold-brew coffee within a few minutes, we present an approach in which an ultrashort-pulsed laser system is applied at the brewing entity without heating the powder suspension in water, efficiently extracting caffeine and aromatic substances from the powder. Already 3 min irradiation at room temperature leads to a caffeine concentration of 25 mg caffeine per 100 ml, comparable to the concentrations achieved by traditional hot brewing methods but comes without heating the suspension. Furthermore, the liquid phase's alkaloid content, analyzed by reversed-phase liquid chromatography coupled to high-resolution mass spectrometry, is dominated by caffeine and trigonelline and is comparable to traditional cold-brewed coffee rather than hot-brewed coffee. Furthermore, analyzing the head-space of the prepared coffee variants, using in-tube extraction dynamic head-space followed by gas chromatography coupled to mass spectrometry, gives evidence that the lack of heating leads to the preservation of more (semi-)volatile substances like pyridine, which provide cold-brew coffee its unique taste. This pioneering study may give the impetus to investigate further the possibility of cold-brewing coffee, accelerated by more than one order of magnitude, using ultrafast laser systems.

18.
J Biomed Mater Res A ; 110(9): 1537-1550, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437923

RESUMO

Bioactive glass (BG) is a frequently used biomaterial applicable in bone tissue engineering and known to be particularly effective when applied in nanoscopic dimensions. In this work, we employed the scalable reactive laser fragmentation in liquids method to produce nanosized 45S5 BG in the presence of light-absorbing Fe and Cu ions. Here, the function of the ions was twofold: (i) increasing the light absorption and thus causing a significant increase in laser fragmentation efficiency by a factor of 100 and (ii) doping the BG with bioactive metal ions up to 4 wt%. Our findings reveal an effective downsizing of the BG from micrometer-sized educts into nanoparticles having average diameters of <50 nm. This goes along with successful element-specific incorporation of the metal ions into the BG, inducing co-doping of Fe and Cu ions as verified by energy-dispersive X-ray spectroscopy (EDX). In this context, the overall amorphous structure is retained, as evidenced by X-ray powder diffraction (XRD). We further demonstrate that the level of doping for both elements can be adjusted by changing the BG/ion concentration ratio during laser fragmentation. Consecutive ion release experiments using inductively-coupled plasma mass spectrometry (ICP-MS) were conducted to assess the potential bioactivity of the doped nanoscopic BG samples, and cell culture experiments using MG-63 osteoblast-like cells demonstrated their cytocompatibility. The elegant method of in situ co-doping of Fe and Cu ions during BG nanosizing may provide functionality-advanced biomaterials for future studies on angiogenesis or bone regeneration, particularly as the level of doping may be adjusted by ion concentrations and ion type in solution.


Assuntos
Cobre , Ferro , Materiais Biocompatíveis/química , Proliferação de Células , Cerâmica/química , Cobre/química , Vidro/química , Íons , Lasers
19.
Chemphyschem ; 23(10): e202200033, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35380738

RESUMO

Noble metal alloy nanoclusters (NCs) are interesting systems as the properties of two or more elements can be combined in one particle, leading to interesting fluorescence phenomena. However, previous studies have been exclusively performed on ligand-capped NCs from wet chemical synthesis. This makes it difficult to differentiate to which extent the fluorescence is affected by ligand-induced effects or the elemental composition of the metal core. In this work, we used laser fragmentation in liquids (LFL) to fabricate colloidal gold-rich bi-metallic AuPt NCs in the absence of organic ligands and demonstrate the suitability of this technique to produce molar fraction series of 1nm alloy NC. We found that photoluminescence of ligand-free NCs is not a phenomenon limited to Au. However, even minute amounts of Pt atoms in the AuPt NCs lead to quenching and red-shift of the fluorescence, which may be attributed to the altered surface charge density.

20.
Light Sci Appl ; 11(1): 68, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322802

RESUMO

Laser ablation in liquids is a highly interdisciplinary method at the intersection of physics and chemistry that offers the unique opportunity to generate surfactant-free and stable nanoparticles from virtually any material. Over the last decades, numerous experimental and computational studies aimed to reveal the transient processes governing laser ablation in liquids. Most experimental studies investigated the involved processes on timescales ranging from nanoseconds to microseconds. However, the ablation dynamics occurring on a sub-nanosecond timescale are of fundamental importance, as the conditions under which nanoparticles are generated are established within this timeframe. Furthermore, experimental investigations of the early timescales are required to test computational predictions. We visualize the complete spatiotemporal picosecond laser-induced ablation dynamics of gold immersed in air and water using ultrafast pump-probe microscopy. Transient reflectivity measurements reveal that the water confinement layer significantly influences the ablation dynamics on the entire investigated timescale from picoseconds to microseconds. The influence of the water confinement layer includes the electron injection and subsequent formation of a dense plasma on a picosecond timescale, the confinement of ablation products within hundreds of picoseconds, and the generation of a cavitation bubble on a nanosecond timescale. Moreover, we are able to locate the temporal appearance of secondary nanoparticles at about 600 ps after pulse impact. The results support computational predictions and provide valuable insight into the early-stage ablation dynamics governing laser ablation in liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...